

Top and b-physics at the Tevatron

Daniela Bauer

for the CDF and DØ collaborations

International Symposium on Multiparticle Dynamics Sonoma, Jul 26-Aug 2 2004

The Tevatron at Fermilab

Run I 1992-1995 $E_{CM} = 1.8 \text{ TeV}$ 125 pb⁻¹

Run II E_{CM} = 1.96 TeV > 500 pb⁻¹

The CDF and DØ detectors

DØ

- excellent muon coverage $|\eta| < 2.0$
- new tracking system (Silicon and Fiber Tracker)
- 2 T magnetic field
- impact parameter trigger

CDF

- excellent tracking resolution
- particle ID (TOF and dE/dx)
- displaced vertex trigger
- new plug calorimeter $1.6 < |\eta| < 3.6$

Top physics at the Tevatron

- The top quark is the only known fermion with a mass on the electroweak scale:
 - decays as a 'free quark'
 - may include non-SM contributions in decay
 - m_W and m_{top} together constrain the Higgs mass

- Discovered in Run I:
 mass and cross-section, W-helicity
 → missing: spin, charge, width
- Run II programme
 - improve previous measurements: mass, cross-section, *W*-helicity and spin-correlations
 - single top
 - branching ratios (non-SM, Higgs)
 - anomalous kinematics (non-SM)
 - resonance production
 - anomalous couplings

Top quark production

In pp-collisions at $\sqrt{s} = 1.96$ TeV, top quarks are mostly produced in pairs:

single top-production

no single top observed (so far) current Run II **CDF** limits: $\sigma(s+t) < 13.7 \text{ pb} @ 95 \% \text{ CL}$ $\sigma(t \text{ only}) < 8.5 \text{ pb} @ 95 \% \text{ CL}$

Top quark decay

$$Br(t \to Wb) \cong 100\%$$
 in the SM

- **dilepton:** Both W decay via $W \rightarrow l v$ (l=e or μ , $\sim 5\%$)
- **lepton+jets**: One W decays via $W \rightarrow l v$ (l=e or μ , ~30%), the other via $W \rightarrow qq$

Top cross section: dilepton channels

very clean, low yield

2 high p_T isolated leptons $(e, \mu, \text{ not } \tau)$ neutrinos: large missing E_T 2 high p_T jets (from b-quarks)

3 channels:

ее, µµ, еµ

Backgrounds:

 $Z \rightarrow l^+ l^-$ (incl. $\tau \tau$) $WW \rightarrow ee$, $\mu\mu$, $e\mu$ + jets (small, but has very toplike signature)

QCD leptons (esp. μ)

Event selection:

di-lepton

- trigger
- missing $E_T > 25 \text{ GeV (e\mu)}/35 \text{ GeV (ee, } \mu\mu)$
- isolated leptons, p_t lepton > 15 (20 for ee)
- $H_T^{-1} > 120 / 140 \text{ GeV}$
- 2 or more jets with $p_t > 20 \text{ GeV}$
- 105 (110) GeV \leq M(ee), (M($\mu\mu$)) \leq 75 (70)GeV

~145 pb ⁻¹	ee	еμ	μμ	$\ell\ell$
Z/γ^*	0.15 ± 0.10	0.47 ± 0.17	2.04± 0.49	2.66 ± 0.53
WW	0.14 ± 0.08	0.29 ± 0.06	0.10 ± 0.04	0.53 ± 0.11
Fakes	0.91 ± 0.30	0.19 ± 0.06	0.46 ± 0.20	1.56 ± 0.36
Total bkg.	1.20 ± 0.33	0.95 ± 0.19	2.61 ± 0.53	4.76 ± 0.65
Observed	5	8	4	17

combined: $\sigma_{ttbar} = 14.3^{+5.1}_{-4.3} (stat)^{+2.6}_{-1.9} (syst) \pm 0.9 (lumi) pb$

Top cross-section: Lepton + jets

"Golden" mode for top studies: ~30% yield and relatively clean

One (and only one) high p_T isolated lepton.

Neutrino: large missing E_T

large jet multiplicity ($\geq 3,4$)

Background: QCD+multijet W+multijet

- topological: event shape, $H_T = \sum p_T^{jet} + p_T^W$
- *b*-tagged: secondary vertex tag soft lepton tag

jet

 $t(\rightarrow W^{\pm}b) \ t(\rightarrow W^{\pm}b)$

lepton + jets

Event selection:

- lepton trigger
- missing $E_T > 20 \text{ GeV}$
- E_T , $p_t(\mu) > 20 \text{ GeV}$
- at least 3 jets with $p_t > 15$ GeV and $|\eta| < 2.0$
- at least one b-tagged jet
- $H_T = \sum E_T + \text{missing } E_T + E_T (p_t(\mu))$
- $H_T > 200 \text{ GeV}$

$$\sigma(t\overline{t}) = 5.6^{+1.2}_{-1.1} (stat)^{+1.0}_{-0.7} (syst) \text{ pb}$$

Top to all jets

~45 % of all decays, but what a mess!

50% of all tt→jets have \leq 5 reconstructed jets but: swamped by background (QCD hard scatter $2 \rightarrow 2$ parton processes)

6 or more jets (one jet per parton) no isolated leptons b-tagging event shape

(neural net)
$$\sigma(t\overline{t}) = 7.7^{+3.4}_{-3.3}(stat)^{+4.7}_{-3.5}(syst) \pm 0.5 \text{ (lumi)}$$

(tagging)

$$\sigma(t\bar{t}) = 7.8 \pm 2.5(stat)_{-2.3}^{+4.7}(syst) \text{ pb}$$

tt Production Cross-Section Summary

All observed cross sections consistent with each other...

Theory predicts $\sigma(t\bar{t}) = 6.7^{+0.7}_{-0.9}$ pb at $m_{top} = 175$ GeV

DØ Run I Top Quark Mass Measurement

$$m_t = 180.1 \pm 3.6 \text{ (stat)} \pm 3.9 \text{ (syst)} \text{ GeV/c}^2$$

Nature (429, pp. 638-642)

- Statistical uncertainty reduced from 5.6 to 3.6 GeV/c²
 - → equivalent to a 2.4x larger dataset

The probability for a top (or background) event to give rise to observed jets, leptons and MET is computed.

M_{top} is measured by maximizing Poisson likelihood for entire event sample.

This measurement increases the world-average top mass from 174 ± 5.1 GeV to 178 ± 4.3 GeV

Advantages:

- all jet permutations contribute
- event-by-event resolutions considered
- non-Gaussian detector response accounted for

Problems:

- only leading-order tt cross section is used
 - → only events with exactly four jets can be used
- gluon fusion diagrams neglected
- only background process computed is W + jets

Run II top mass CDF

Lepton+ jets:

- template (Run I)
- multivariate
- dynamical likelihood
- → best Run II CDF result so far

$$M_{top} = 177.8 \pm \frac{4.5}{5.0} (stat.) \pm 6.2 (syst.) GeV/c^2$$

Systematic error is dominated by modeling of the calorimeter response

improved result for Winter 2005

First Run II DØ mass measurement soon.

W-helicity in top decays

• In the SM only left-handed (W) and longitudinally polarized (W₀) are produced.

$$F_0 \equiv \frac{\Gamma(t \rightarrow W_0 b)}{\Gamma(t \rightarrow W_0 b) + \Gamma(t \rightarrow W_T b)} = \frac{\frac{1}{2} (m_t / m_W)^2}{1 + \frac{1}{2} (m_t / m_W)^2}$$

With
$$m_t = 175 \text{ GeV}$$
 $F_0 = 0.703$

$$F_0 = 0.703$$

Run I results:

CDF (2000): $F_0 = 0.91 \pm 0.37$ (stat) ± 0.13 (syst)

DØ (2004): $F_0 = 0.56 \pm 0.32$ (stat+ m_t) ± 0.07 (syst)

W-helicity Run II

lepton + jets:

$$F_0 = 0.88^{+0.12}_{-0.47} \text{ (stat+syst)}$$

$$F_0 > 0.24 @ 95 \% CL$$

di-lepton:

$$F_0 < 0.52 \ \text{@} 95 \% \ \text{CL}$$

$$F_0 < 0.94 @ 99 \% CL$$

combined:

$$F_0 = 0.27^{+0.35}_{-0.21} \text{ (stat + syst)}$$

$$F_0 < 0.88 @ 95 \%CL$$

Updated DØ measurement soon

b-physics at the Tevatron

The Tevatron is a *b*-factory:

$$\sigma(pp \rightarrow bb) = 150 \,\mu\text{b} \text{ (at 1.96 TeV)}$$

All types of *B*-hadrons are being produced (B_d , B_s , B^{**} , Λ_b etc)

CDF and DØ have a large and varied b-physics programme → can only present a limited selection today

- Mixing
- Lifetimes
- Lifetime difference in $B_s \rightarrow J/\Psi \Phi$
 - X
 - $B_{\rm S} \to \Phi \Phi$
 - $B_{\rm s/d} \rightarrow \mu\mu$
 - Pentaquarks

not covered:

- b and quarkonia production
- CP violation
- hadronic moments
- B_c
- B**
- $B \rightarrow D^{**} X$
- Helicity amplitudes in

$$B \rightarrow J/\Psi K^*/\Phi$$

etc.

$$i\frac{\partial}{\partial t} \begin{pmatrix} \left| B_q^0(t) \right\rangle \\ \left| \overline{B}_q^0(t) \right\rangle \end{pmatrix} = \left(\mathbf{M} - i\frac{\Gamma}{2} \right) \begin{pmatrix} \left| B_q^0(t) \right\rangle \\ \left| \overline{B}_q^0(t) \right\rangle \end{pmatrix}$$

M = mass matrix $\Gamma = decay matrix$

To measure B-mixing:

- proper decay time cτ
- identify *b*-flavour at production
- identify *b*-flavour at decay

Tagging efficiency $\varepsilon = N_{tag}/N_{tot}$ Dilution D= $(N_R - N_W)/(N_R + N_W)$ Tag power= εD^2

Flavour tagging:

- same side tagging: charge of 'nearby' track correlated with b-quark flavour $(b \leftrightarrow \pi^+, bbar \leftrightarrow \pi^-)$
- opposite side jet charge tagging: sign of b-quark ~ sign of momentum weighted sum of particles charges in jet
- opposite side lepton (here: μ) tagging: from semileptonic *b*-decays $(b \leftrightarrow l^-, bbar \leftrightarrow l^+)$

Mixing Results from CDF

exclusive decays

$$B^0 \to J/\Psi K^{*0}$$

$$B^0 o \mathrm{D}^{\text{-}} \, \pi^{\text{+}}$$

$$\Delta m_d = 0.55 \pm 0.10 \pm 0.01 \text{ ps}^{-1}$$

world average: $\Delta m_d = 0.502 \pm 0.007$

• semileptonic b-decays using same side tagging

$$\Delta m_d = 0.443 \pm 0.052 \text{ (stat.)} \pm 0.030 \text{ (s.c.)} \pm 0.012 \text{ (syst.)} \text{ ps}^{-1}$$
 $D_0 = 12.8 \pm 1.6 \text{ (stat.)} \pm 1.0 \text{ (s.c.)} \pm 0.6 \text{ (syst.)} \%$
 $D_+ = 28.3 \pm 1.3 \text{ (stat.)} \pm 1.1 \text{ (s.c.)} \pm 1.0 \text{ (syst.)} \%$
 $\epsilon D^2(B^0) = 1.1 \pm 0.3 \text{ (stat.)} \pm 0.2 \text{ (s.c.)} \pm 0.1 \text{ (syst.)} \%$

Mixing Results from DØ

Semileptonic *B*-decays:

$$\begin{array}{c} B \longrightarrow D^{*-} \ \mu^{+} \ \nu \ X \\ D^{*-} \longrightarrow D^{0} \ \pi^{-} \\ D^{0} \longrightarrow K^{+} \pi^{-} \end{array}$$

opposite-side muon tagging

world average: $\Delta m_d = 0.502 \pm 0.007$

$\Delta m_d = 0.506 \pm 0.055$ (stat.) ± 0.049 (syst.) ps⁻¹

- Tagging efficiency: $4.8 \pm 0.2 \%$
- Tagging purity, $N_R/(N_R+N_W) = 73.0 \pm 2.1 \%$
- $D = 46 \%, \epsilon D^2 = 1.0 \%$

Run II lifetime measurements

HQET/OPE predict lifetime ratios: $\tau(B^+)/\tau(B^0_d) = 1.053 \pm 0.016 \pm 0.017$

CDF

B meson	N(B)	$\tau(B)$ in ps	PDG 03 in ps
$B^+ \rightarrow J/\Psi K^+$	~3390	$1.662 \pm 0.033 \pm 0.008$	1.671 ± 0.018
$B^0 \rightarrow J/\Psi K^{*0}$	~1160	$1.539 \pm 0.051 \pm 0.008$	1.537 ± 0.015
$B_s \rightarrow J/\Psi \Phi$	~260	$1.369 \pm 0.100 ^{+0.008}_{-0.010}$	1.461 ± 0.057

$$\tau (B^{+}) / \tau (B^{0}) = 1.080 \pm 0.042 (tot.)$$

 $\tau (B_{s}) / \tau (B^{0}) = 0.890 \pm 0.072 (tot.)$

correlated errors

DØ

preliminary

semileptonic

$$\tau(B^+)/\tau(B^0) = 1.093 \pm 0.021 \text{ (stat)} \pm 0.022 \text{ (syst)}$$

decays

Lifetime difference and in $B_s \rightarrow J/\Psi \Phi$ (Method)

In J/Ψ restframe:

 K^+K^- plane defines (x,y) plane

K⁺ defines +y direction

 Θ , Ψ polar and azimuthal angles of μ^+

φ in Φ restframe: angle(K+, -J/Ψ)

$$B_{s}^{H} = \frac{1}{\sqrt{2}} (|B_{s}\rangle + |\overline{B}_{s}\rangle) = CP - odd$$

$$B_{s}^{L} = \frac{1}{\sqrt{2}} (|B_{s}\rangle - |\overline{B}_{s}\rangle) = CP - even$$

scalar → VV decay

→ 3 amplitudes L = 0 (even),1 (odd), 2 (even)

described in transversity basis

Lifetime difference and in $B_s \rightarrow J/\Psi \Phi$ (Results)

$$\Gamma = \frac{1}{2} (\Gamma_L + \Gamma_H) \equiv 1/\tau$$

$$\Delta \Gamma = \Gamma_L - \Gamma_H$$

theory:
$$\Delta\Gamma/\Gamma_s = 0.12 \pm 0.06$$

constrained fit
$$\Gamma_s = \Gamma_d$$

$$\tau_L = 1.13^{+0.13}_{-0.09} \pm 0.02 \text{ ps}$$

$$\tau_H = 2.38^{+0.56}_{-0.43} \pm 0.03 \text{ ps}$$

$$\Delta\Gamma = 0.46 \pm 0.18 \pm 0.01 \text{ ps}^{-1}$$

 $\Delta\Gamma/\Gamma_{s} = 0.71^{+0.24}_{-0.28} \pm 0.01$

unconstrained fit: $\Delta\Gamma/\Gamma_{\rm s} = 0.65^{+0.25}_{-0.33} \pm 0.01$

$X(3872) \rightarrow J/\Psi \pi^+\pi^-$

Belle: $M_X = 3872.0 \pm 0.6 \text{ (stat)} \pm 0.5 \text{ (sys)} \text{ MeV/c}^2$

Exp	Lumi [pb ⁻¹]	range	Mass [MeV]	Mass res [MeV]	Signal	Signi- ficance
CDF	220	y < 1	$3871.3 \pm 0.7 \pm 0.3$	4.9	730 ± 90	≈ 12σ
DØ	230	y < 2	3871.8 ± 3.1 ± 3.0	17	522 ± 100	≈ 5σ

$X(3872) - \Psi(2S)$ comparison

Is the X(3872) charmonium, molecule, ...?

Similar in decay length and isolation \rightarrow similar prompt production fraction as $\Psi(2S)$

No significant differences between $\psi(2S)$ and X have been observed yet.

Charmless *B*-decays: $B_s \rightarrow \Phi \Phi$

First 'observation' ($\sigma = 4.7$) at CDF

gluonic penguin decay

12 events seen expected bkg 1.95 events

$$BR(B_s \to \Phi \Phi) = (1.4 \pm 0.6 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.5 \text{ (BRs)}) * 10^{-5}$$

You won't see this at the *b*-factories.....

Rare decays: $B_{s/d} \rightarrow \mu^+ \mu^-$

SM prediction:
$$BR(B_s \rightarrow \mu \mu) = (3.4 \pm 0.5) \cdot 10^{-9}$$

 $B_d \rightarrow \mu \mu$ suppressed by $|V_{td}/V_{ts}| \cong 4 \cdot 10^{-2}$

CDF Run II limits:

$$BR(B_s \to \mu \mu) < 5.8 \cdot 10^{-7} @ 90 \% CL$$

 $BR(B_d \to \mu \mu) < 1.5 \cdot 10^{-7} @ 90 \% CL$

DØ

Sensitivity @ 95 % CL: $RR(R \rightarrow U^{+}U^{-}) < 0.1 \cdot 10^{-7} \text{ (sta)}$

 $BR(B_s \to \mu^+ \mu^-) < 9.1 \cdot 10^{-7} \text{ (stat only)}$ $BR(B_s \to \mu^+ \mu^-) < 1.0 \cdot 10^{-6} \text{ (stat+syst)}$

Box will be opened for ICHEP

Pentaquarks

CDF has performed a search in the following channels:

•
$$\Theta^+$$
 (uudd \overline{s})) $\rightarrow p K_s \rightarrow p \pi^+ \pi^-$

•
$$\Theta_{c}$$
 (uudd \overline{c}) $\rightarrow D^{*-} p \rightarrow D^{0} \pi^{-} p$

•
$$\Xi^0_{3/2}$$
 (ssdu \overline{d}) $\rightarrow \Xi^- \pi^+ \rightarrow \Lambda \pi^+ \pi^-$

•
$$\Xi^{-}_{3/2}$$
 (ssdd \overline{u}) $\rightarrow \Xi^{-} \pi^{-} \rightarrow \Lambda \pi^{-} \pi^{-}$

So far CDF has not observed any pentaquark states.

Summary

- The Tevatron integrated luminosity > 500 pb⁻¹/experiment
- Top
 - Run II luminosity in measurements now exceeds Run I
 - Sophisticated analysis techniques in place
 - Measurement of top properties in progress
- *b*-physics
 - Rich programme, not all covered in this talk
 - Competitive and complementary to *b*-factories

*** Many more results coming soon ***

Backup Slides

Tagging Tools: Vertexing and Soft Muons

B hadrons in top signal events

Identify low-pt muon from decay

- $b \rightarrow \ell \nu c \text{ (BR} \sim 20\%)$
- $b \rightarrow c \rightarrow \ell \nu s \; (BR \sim 20\%)$

Lepton+jets: topological

$$H_T = \sum p_T^{jet} + p_T^W$$
 Highly correlated with the top mass!

Aplanarity $A = 3/2 \times \text{smallest eigenvalue of the normalized}$

momentum tensor
$$M_{ij}$$

$$M_{ij} = \frac{\sum_{o} p_i^o p_j^o}{\sum_{o} |\vec{p}^o|^2}$$

Large values of A indicate spherical (top) events.

Top Quark Mass Measurements

DØ: New analysis of Run I Data Nature 429, 638 (2004)

- Rather than a kinematic fit, the probability for a top (or background) event to give rise to observed jets, leptons and MET is computed
- Also define background probability for each event
- M. measured by maximizing Poisson likelihood for entire event sample
- Advantages
- - all jet permutations contribute
- - additional kinematic information used
- - event-by-event resolutions considered
- - non-Gaussian detector response accounted for
- Compromises
- - only leading-order tt cross section is used
- → only events with exactly four jets can be used
- - gluon fusion diagrams neglected
- - only background process computed is W + jets

22 events including 10 background

 $M_t = 180.1 \pm 3.6 (stat) \pm 4.0 (syst) GeV$

Lepton + jets CDF Run II mass measurements -- methods

Template Method (Run I method):

- Kinematic fitter to reconstruct top mass
- Kinematic constraints $(m_t = m_{tbar} etc)$
- Use best (smallest χ^2) of 12 (4 if double btag) solutions
- One dinemsional templates parametrized for top and background as function of top mass

Multivariate Template Method:

- Refined kinematic fitter with jet energy scale optimization
- Kinematic constraints
- best combination, weight according to correct permutation probability
- mulitidimensional non-parametric templates

Dynamical Likelihood Method:

- Matrix Element Method
- use all 12 (4) combinations
- calorimeter transfer functions

Top mass constraint on the Higgs mass

b - Lifetimes

Heavy Quark Effective Theory $(m_Q >> \Lambda_{QCD})$ but not top!

Mixing

 B_s ($\sim b\bar{s}$), \bar{B}_s ($\sim b\bar{s}$) are produced in one of the two possible flavour states. This initial state evolves into a time-dependent superposition of the two states according to:

$$i\frac{\partial}{\partial t} \begin{pmatrix} \left| B_q^0(t) \right\rangle \\ \left| \overline{B}_q^0(t) \right\rangle \end{pmatrix} = \left(\mathbf{M} - i\frac{\Gamma}{2} \right) \begin{pmatrix} \left| B_q^0(t) \right\rangle \\ \left| \overline{B}_q^0(t) \right\rangle \end{pmatrix}$$

B_s mixing via top quarks

$$M = mass matrix$$

 $\Gamma = decay matrix$

$$\Delta\Gamma_s/\Gamma<0.52$$
 at 95% c.l. $\Delta\Gamma_s/\Gamma_{light}=0.26~(^{+0.30})$ ALEPH theory: 0.12 ± 0.06

$$x_s = \Delta m_{B_s}/\Gamma > 19.0$$

at 95% confidence level
 $x_d = \Delta m_{B_d}/\Gamma = 0.755 \pm 0.015$

Rare decays: $B_{s/d} \rightarrow \mu \mu$ – theoretical predictions

Main contributing Standard Model diagrams

Theoretical predictions

	$BR(B_d \rightarrow l^+l^-)$	$BR(B_s \rightarrow l^+l^-)$
l = e	$(3.4 \pm 2.3) \cdot 10^{-15}$	$(8.0 \pm 3.5) \cdot 10^{-14}$
$l = \mu$	$(1.5 \pm 0.9) \cdot 10^{-10}$	$(3.4 \pm 0.5) \cdot 10^{-9}$
$1 = \tau$	$(3.1 \pm 1.9) \cdot 10^{-8}$	$(7.4 \pm 1.9) \cdot 10^{-7}$

Experimental upper limits (at 90% (95%) confidence level)

	$BR(B_d \rightarrow l^+ l^-)$	$BR(B_s \rightarrow l^+l^-)$
l = e	$< 5.9 \cdot 10^{-6}$	$< 5.4 \cdot 10^{-5}$
$1 = \mu$	$< 1.5(1.9) \cdot 10^{-7}$	$< 5.8(7.5) \cdot 10^{-7}$
$1 = \tau$	< 2.5%	< 5.0%