

Y(1S) Production at DØ Daniela Bauer

Indiana University

2004 Phenomenology Symposium, Madison, Wisconsin April 26-28, 2004

Why measure $\Upsilon(1S)$ at DØ?

- Measuring the $\Upsilon(1S)$ production cross-section provides an ideal testing ground for our understanding of the production mechanisms of heavy quarks.
- The Υ(1S) cross-section had been measured at the Tevatron (Run I measurement by CDF) up to a rapidity of 0.4.
 DØ aims to measure this cross-section up to a rapidity of 1.8.
- The color octet model predicts an increase in transverse polarization with increasing p₊.
 - Measurements so far have been inconclusive.

Where do the $\Upsilon(1S)$ come from ?

- All Bottomonium States are produced directly.
- ~ 50 % of $\Upsilon(1S)$ are produced directly.
- The rest are the result of higher mass states decaying.

Bottomonium States

The upgraded DØ Detector

The DØ trigger system

DØ luminosity

The Analysis

Goal:

Measuring the Υ (1*S*) cross-section in the channel Υ (1*S*) $\rightarrow \mu^{+}\mu^{-}$ as a function of p_{t} in three rapidity ranges: $0 < |y^{\Upsilon}| < 0.6$, $0.6 < |y^{\Upsilon}| < 1.2$ and $1.2 < |y^{\Upsilon}| < 1.8$

Sample selection:

- Opposite sign muons
- Muon have hits in all three layers of the muon system
- Muons are matched to a track in the central tracking system
- $p_{t}(\mu) > 3 \text{ GeV and } |\eta(\mu)| < 2.2$
- At least one isolated muon
- Track from central tracking system must have at least one hit in the Silicon Tracker

The signal

Signal: 3 Gaussians: $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$

Background: 3rd order polynomial

$$m(\Upsilon(2/3S)) = m(\Upsilon(1S)) + \Delta m_{PDG}(\Upsilon(2/3S) - \Upsilon(1S))$$

$$\sigma(\Upsilon(2/3S)) = \sigma(\Upsilon(1S)) + m\Upsilon(2/3S)/m(\Upsilon(1S)) * \sigma(\Upsilon(1S))$$

 \rightarrow 5 free parameters in signal fit: $\mathbf{m}(\Upsilon(1S))$, $\mathbf{\sigma}(\Upsilon(1S))$, $\mathbf{c}(\Upsilon(1S))$, $\mathbf{c}(\Upsilon(2S))$, $\mathbf{c}(\Upsilon(3S))$

All plots: $3 \text{ GeV} < p_{\star}(\Upsilon) < 4 \text{ GeV}$

PDG: $m(\Upsilon(1S)) = 9.46 \text{ GeV}$

$$m(\Upsilon) = 9.423 \pm 0.008 \text{ GeV} \text{ m}(\Upsilon) = 9.415 \pm 0.009 \text{ GeV}$$

$$0 < |y^{\Upsilon}| < 0.6$$

$$0.6 < |y^{\Upsilon}| < 1.2$$

$$m(\Upsilon) = 9.403 \pm 0.013 \text{ GeV}$$

$$1.2 < |y^{\Upsilon}| < 1.8$$

Width from fit for $\Upsilon(1S)$ with $|y^{\Upsilon}| < 0.6$

Data

 MC

 $\sim 43000 \Upsilon(1S)$ candidates

$\Upsilon(1S)$ Cross-section

$$\frac{d^2\sigma(\Upsilon(1S))}{dp_t \times dy} = \frac{N(\Upsilon)}{L \times \Delta p_t \times \Delta y \times \varepsilon_{kinem} \times \varepsilon_{acc} \times \varepsilon_{trig} \times \varepsilon_{muid} \times \varepsilon_{trk} \times \varepsilon_{fit} \times \varepsilon_{iso-smt}}$$

$$\frac{dp_t \times dy}{luminosity L}$$

$$\frac{dp_t \times dy}{rapidity y = \frac{1}{2} ln \left[(E+p_y)/(E-p_y) \right]}$$

Muons that will not reach the muon system are removed after the generator stage ($p_t(\mu) > 1.8$ GeV and $|y(\mu)| < 2.2$). Determined from Monte Carlo without trigger condition.

Fraction of Y that pass the kinematic cuts and are reconstructed. Determined from Monte Carlo.

Trigger efficiency (Level1 and Level2).
From data and Monte Carlo.

Upsilon cross-section continued

$$\frac{d^2\sigma(\Upsilon(1S))}{dp_t \cdot dy} = \frac{N(\Upsilon)}{L \times \Delta p_t \times \Delta y \times \epsilon_{kinem} \times \epsilon_{acc} \times \epsilon_{trig} \times \epsilon_{muid} \times \epsilon_{trk} \times \epsilon_{fit} \times \epsilon_{iso-smt}}$$

- Correction to account for differences between data and MC in the *local* (i.e. muon system only) muon reconstruction.
- Correction to account for differences between data and MC in the efficiency to match *local* tracks in the muon system to tracks in the *central* tracking system. This includes the tracking efficiency for muons in the central tracking system.
- **E**_{iso-smt} Correction to account for differences between data and MC regarding track isolation and Silicon hit requirement.
 - To account for losses due to a single Gaussian fit to model the $\Upsilon(1S)$ mass resolution.

Efficiencies from Monte Carlo

*9.0 GeV < $m(\mu\mu)$ < 9.8 GeV

$ \mathbf{y}^{\Upsilon} $	د kinem	E acc
0.0 - 0.6	0.8 - 0.9	0.25 - 0.4
0.6 - 1.2	0.8 - 0.9	0.25 - 0.4
1.2 – 1.8	0.7 - 0.75	0.25 - 0.4

Trigger

Level 1: di-muon trigger, scintillator only

Level 2: one medium muon (early runs)

two muons, at least one medium, separated in eta and phi (later runs)

Both triggers at Level 2 are $\sim 97 \%$ efficient wrt Level 1 condition.

Trigger efficiency for fully reconstructed di-muon events:

central region: 65 %

forward region: 80 %

Corrections: Tracking efficiency

Method:

Reconstruct J/ ψ using *global* (i.e. muons matched to a track in the central tracking system) and *local* (i.e. muons that are only reconstructed in the muon system and not matched to a central track) muons.

* i.e. the local momentum of the test muon is used, whether is was matched or not.

Corrections: Tracking Efficiency

$$Efficiency = \frac{N_{J/\psi}(global \& global)}{N_{J/\psi}(global \& local) + N_{J/\psi}(global \& global)}$$

Corrections: Local muon reconstruction efficiency

- reconstruct J/ψ: muon & muon and muon & track
- $\varepsilon = \text{muon \& muon / muon \& track}$

central muon detector forward muon detector

Corrections: Isolation and Silicon Hit Requirement

From data – Monte Carlo predicts isolation requirement to be 100% efficient.

Normalized Cross-section for $\Upsilon(1S)$

Normalized Cross-section

Systematic Errors – very preliminary

local muon ID	6-10 %
trigger	< 10 %
MC modeling of kinematics fitting procedure central track matching primary vertex requirement	2-4 % 3-5 % 2 % 1 %
momentum resolution	1 %
isolation and Silicon hit requirement	1-3 %
Luminosity	6.5 %
Polarization	~20 %

Total (not including polarization): 14-16 %

Conclusions

- $\Upsilon(1S)$ Cross-section measurement extended to y = 1.8
- Normalized cross-sections show very little dependence on rapidity.
- Normalized cross-section is in good agreement with published results.
- Absolute cross-section measurement is nearly ready.
- Next step: Polarization measurement.